Parameter Identification of Lithium Battery Model Based on Chaotic Quantum Sparrow Search Algorithm

نویسندگان

چکیده

An accurate battery model is of great importance for state estimation. This study considers the parameter identification a fractional-order (FOM) battery, which can more realistically describe reaction process cell and provide precise predictions. Firstly, an improved sparrow search algorithm combined with Tent chaotic mapping, quantum behavior strategy Gaussian variation proposed to regulate early population quality, enhance its global ability avoid trapping into local optima. The effectiveness superiority are verified by comparing (CQSSA) particle swarm optimization (PSO), genetic (GA), grey wolf (GWO), Dingo (DOA) (SSA) on benchmark functions. Secondly, parameters FOM identified using six algorithms under hybrid pulse power characterization (HPPC) test. Compared SSA, CQSSA has 4.3%, 5.9% 11.5% improvement in mean absolute error (MAE), root square (RMSE) maximum (MaAE), respectively. Furthermore, these used pulsed discharge test (PULSE) urban dynamometer driving schedule (UDDS) verify adaptability algorithm. Simulation results show that perform well terms MAE, RMSE MaAE terminal voltages all three different tests, demonstrating high accuracy good

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization

The dynamic characteristics of power batteries directly affect the performance of electric vehicles, and the mathematical model is the basis for the design of a battery management system (BMS).Based on the electrode-averaged model of a lithium-ion battery, in view of the solid phase lithium-ion diffusion equation, the electrochemical model is simplified through the finite difference method. By ...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Cuckoo Search Algorithm for Model Parameter Identification

In this paper, the metaheuristics algorithm Cuckoo Search (CS), is adapted and applied for a model parameter identification of an E. coli fed-batch cultivation process. The dynamics of bacteria growth and substrate (glucose) utilization is described by a system of ordinary nonlinear differential equations. Using real experimental data set from an E. coli MC4110 fed-batch cultivation process a p...

متن کامل

Lithium Ion Battery Models and Parameter Identification Techniques

Nowadays, battery storage systems are very important in both stationary and mobile applications. In particular, lithium ion batteries are a good and promising solution because of their high power and energy densities. The modeling of these devices is very crucial to correctly predict their state of charge (SoC) and state of health (SoH). The literature shows that numerous battery models and par...

متن کامل

Multi-Scale Parameter Identification of Lithium-Ion Battery Electric Models Using a PSO-LM Algorithm

This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB) electric model by using a combination of particle swarm optimization (PSO) and Levenberg-Marquardt (LM) algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD) of the positive and negative electrodes in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12147332